Functional proteomic discovery of Slr0110 as a central regulator of carbohydrate metabolism in Synechocystis species PCC6803.
نویسندگان
چکیده
The unicellular photosynthetic model-organism cyanobacterium Synechocystis sp. PCC6803 can grow photoautotrophically using CO2 or heterotrophically using glucose as the sole carbon source. Several pathways are involved in carbon metabolism in Synechocystis, and the concerted regulation of these pathways by numerous known and unknown genes is critical for the survival and growth of the organism. Here, we report that a hypothetical protein encoded by the open reading frame slr0110 is necessary for heterotrophic growth of Synechocystis. The slr0110-deletion mutant is defective in glucose uptake, heterotrophic growth, and dark viability without detectable defects in autotrophic growth, whereas the level of photosystem II and the rate of oxygen evolution are increased in the mutant. Quantitative proteomic analysis revealed that several proteins in glycolysis and the oxidative pentose phosphate pathway are down-regulated, whereas proteins in photosystem II and phycobilisome are significantly up-regulated, in the mutant. Among the down-regulated proteins are glucose transporter, glucokinase, glucose-6-phosphate isomerase, and glucose-6-phosphate dehydrogenase and its assembly protein OpcA, suggesting that glycolysis, oxidative pentose phosphate, and glycogen synthesis pathways are significantly inhibited in the mutant, which was further confirmed by enzymatic assays and quantification of glycogen content. These findings establish Slr0110 as a novel central regulator of carbon metabolism in Synechocystis, and shed light on an intricate mechanism whereby photosynthesis and carbon metabolism are well concerted to survive the crisis when one or more pathways of the system are impaired.
منابع مشابه
Study of Light Wavelength Dependency in Red-Orange Spectrum on Continuous Culture of Synechocystis sp. PCC6803
In this study, the effect of light wavelength on growth rate and lipid production of Synechocystis was investigated. Continuous cultivation system was used to have uniform cell density and avoid self-shading in order to obtain more precise results. Based on previous studies, red light is more efficient than other colors in the visible spectrum for cultivation of Synechocystis; however, the opti...
متن کاملProteomics with a pinch of salt: A cyanobacterial perspective
Cyanobacteria are ancient life forms and have adapted to a variety of extreme environments, including high salinity. Biochemical, physiological and genetic studies have contributed to uncovering their underlying survival mechanisms, and as recent studies demonstrate, proteomics has the potential to increase our overall understanding further. To date, most salt-related cyanobacterial proteomic s...
متن کاملThe Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803.
Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray me...
متن کاملCorrection: The rnb Gene of Synechocystis PCC6803 Encodes a RNA Hydrolase Displaying RNase II and Not RNase R Enzymatic Properties
Cyanobacteria are photosynthetic prokaryotic organisms that share characteristics with bacteria and chloroplasts regarding mRNA degradation. Synechocystis sp. PCC6803 is a model organism for cyanobacteria, but not much is known about the mechanism of RNA degradation. Only one member of the RNase II-family is present in the genome of Synechocystis sp PCC6803. This protein was shown to be essenti...
متن کاملGlycogen Synthase Isoforms in Synechocystis sp. PCC6803: Identification of Different Roles to Produce Glycogen by Targeted Mutagenesis
Synechocystis sp. PCC6803 belongs to cyanobacteria which carry out photosynthesis and has recently become of interest due to the evolutionary link between bacteria and plant species. Similar to other bacteria, the primary carbohydrate storage source of Synechocystis sp. PCC6803 is glycogen. While most bacteria are not known to have any isoforms of glycogen synthase, analysis of the genomic DNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular & cellular proteomics : MCP
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2014